This single-semester course assumes prior exposure to quantum mechanics and is designed to train students in more complex concepts and tools of quantum mechanics. The topics include mathematical framework of complex vector spaces, exactly solvable systems such as harmonic oscillator and spin-half, path integral formalism, continuous and discrete symmetries, gauge invariance and quantum Hall effect ,time-independent and time-dependent perturbation theory, second quantization of many-body quantum systems. The aim of the course is to provide foundational conceptual and technical background requisite for advanced elective courses, such as quantum Information, quantum optics, quantum field theory, and/or quantum many-body physics.
This course is aimed at science and engineering students interested in pursuing careers in the broad field of Quantum Information Science and Engineering, which is an emerging field located at the intersection of mathematics, physics, and computer science. Emphasis will be put on learning how to develop a quantum application using the IBM quantum experience platform.
This single-semester course assumes prior exposure to quantum mechanics and is designed to train students in more complex concepts and tools of quantum mechanics. The topics include mathematical framework of complex vector spaces, exactly solvable systems such as harmonic oscillator and spin-half, path integral formalism, continuous and discrete symmetries, gauge invariance and quantum Hall effect ,time-independent and time-dependent perturbation theory, second quantization of many-body quantum systems. The aim of the course is to provide foundational conceptual and technical background requisite for advanced elective courses, such as quantum Information, quantum optics, quantum field theory, and/or quantum many-body physics.